Fuzzy rule-based networks for control

نویسندگان

  • Charles M. Higgins
  • Rodney M. Goodman
چکیده

Charles M. Higgins and Rodney M. Goodman Abstract| We present a method for the learning of fuzzy logic membership functions and rules to approximate a numerical function from a set of examples of the function's independent variables and the resulting function value. This method uses a three-step approach to building a complete function approximation system: rst, learning the membership functions and creating a cell-based rule representation; second, simplifying the cell-based rules using an informationtheoretic approach for inductionof rules from discrete-valued data; and nally, constructing a computational (neural) network to compute the function value given its independent variables. This function approximation system is demonstrated with a simple control example: learning the truck and trailer backer-upper control system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Using a Fuzzy Rule-based Algorithm to Improve Routing in MPLS Networks

Today, the use of wireless and intelligent networks are widely used in many fields such as information technology and networking. There are several types of these networks that MPLS networks are one of these types. However, in MPLS networks there are issues and problems in the design and implementation discussion, for example security, throughput, losses, power consumption and so on. Basically,...

متن کامل

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Control Chart Recognition Patterns using Fuzzy Rule-Based System

Control Chart Patterns (CCPs) recognition is one the most important concepts in control chart application. Relating the patterns exhibited on the control chart to assignable causes is an ambiguous and vague task especially when multiple patterns co-exist. In this study, a fuzzy rule-based system is developed for X ̅ control charts to prioritize the control chart causes based on the accumulated e...

متن کامل

Entropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection

Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Fuzzy Systems

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1994